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Abstract. Double-differenced GPS carrier phase measurements are commonly 
used in GPS precise positioning applications and processed with algorithms 
based on the least-squares (LS) principle. In order to apply the LS principle, one 
needs to define properly both the functional and stochastic models. Whilst the 
functional model for precise GPS positioning is sufficiently well known, realistic 
stochastic modeling is still a difficult task to accomplish in practice. Incorrect 
stochastic models for double-differenced GPS measurements will lead to 
unreliable estimates for ambiguity resolution and, eventually, it will bias 
positioning results. The common assumption when we construct the stochastic 
model is that all raw GPS measurements are independent and have the same 
variances. In fact, this is not realistic, since due to varying noise levels 
measurements obtained from different GPS satellites cannot have the same 
accuracy. A realistic stochastic modeling should be able to capture the ordinary 
noises in the observables.   

In order to specify a realistic stochastic model for precise relative GPS positioning 
applications, in this paper the performance of three stochastic models namely the 
commonly used model or the standard model, the outer product of residual data 
vector model and Minimum Norm Quadratic Unbiased Estimation (MINQUE) are 
examined and effects of each the proposed model on statistic for ambiguity 
search and positioning accuracy are compared. The results indicate that the 
MINQUE model tends to perform better than the other models. Using the 
MINQUE model, the reliability of the ambiguity resolution and the statistics of 
the baseline components can be improved. It may suggest that the MINQUE 
model, which is based on modern statistical theory, is capable of capturing the 
ordinary noises.  

1 Introduction 
Nowadays, GPS has been playing an increasingly important contribution in 
high-precision surveying and geodetic applications. In order to ensure high 
accuracy, double-differenced GPS measurements are favored because they can 
eliminate some systematic errors such as satellite and receiver clock errors. In 
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GPS positioning adjustment, as like in traditional geodetic adjustment, the least-
squares (LS) principle is applied to estimate baseline components and other 
nuisance parameters. In order to apply the LS principle, one needs to define 
properly both the functional and stochastic models. Whilst the functional model 
for precise GPS positioning is sufficiently well known, realistic stochastic 
modeling is still a difficult task to accomplish in practice. The stochastic model 
of the double-differenced measurements is commonly constructed by applying 
the variance-covariance propagation law. In this case, the variance-covariance 
(VC) matrix of the zero-differenced measurements, assuming that all raw GPS 
measurements are independent and have the same variances, is used to construct 
the VC-matrix of the double-differenced measurements. However, such 
assumption may be not realistic due to residual or unmodeled systematic errors, 
which have varying noise level, may be present in the double-differenced 
observables. A more reliable stochastic model needs to be investigated 
accordingly. 

Kuterer (1999) has studied the sensitivity of some characteristic results of the 
LS adjustments such as the estimated values of the parameters and their VC-
matrix due to imminent uncertainties of the stochastic model. In case of the LS 
adjustments for GPS measurements, a proper choice of the VC-matrix is of 
relevance for all the subsequent stages of the data processing. The LS solution 
for instance, will loose its property of "minimum variance" when mis-specified 
VC-matrix is used. In addition, the detection power of the statistical test, 
employed for model validation and quality control (e.g. outliers and cycle-
slips), will become smaller when the noise characteristics are not properly taken 
into account. And finally, the a posteriori quality description of the computed 
results will also be affected when mis-specified or oversimplified VC-matrices 
are used (Teunissen et.al, 1998). According to studies carried out by Teunissen 
et al (1998) and also by Kutere (1999), it is obviously shown that incorrect 
stochastic models will lead to unreliable estimates for ambiguity resolution and, 
eventually, it will bias positioning results. In order to ensure a realistic 
stochastic model for double-differenced GPS data, the VC-matrix should be 
able to capture the ordinary noise in GPS observables.  

Recently, some efforts have been made to improve the stochastic models used 
in GPS relative positioning. Han (1997) has used an exponential formula to 
approximate the standard deviation of GPS measurements, which are considered 
to be dependent on the elevation angles of the tracked satellites. The 
coefficients of the exponential formula are determined using empirical methods 
with experimental data. El-Rabbany and Kleusberg (2003) considered the 
temporal correlation of the GPS observables and they assumed that all one-way 
measurements are independent and have the same variances and temporal 
correlation. Tiberius and Kanselaar (2000, 2003) considered satellite elevation 
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dependent, time-correlation and cross-correlation of the GPS observables. 
Hartinger and Brunner (1999), Wieser and Brunner (2000, 2001) have proposed 
the family of the stochastic SIGMA model that is SIGMA-ε, SIGMA-∆ and 
SIGMA-F. These models, which used satellite elevation dependent and signal-
to-noise ratio (SNR) as the quality indicators for GPS observations, have 
successfully eliminated the systematic errors inherent in GPS measurements. 
Positioning accuracy of the kinematic GPS data test in the presence of multipath 
and signal diffraction could be well improved. However, Satirapod et al (2002) 
have shown that such quality indicators may not always reflect reality. 
Therefore, a rigorous statistical method for estimating VC-components should 
be applied.  

A comprehensive study of some rigorous methods for estimating the VC-
components has been carried out by Crocetto et al (2000), Bera et al (2002) and 
Chang (2003a, 2003b). Regarding these methods, as long as the influence of the 
gross error can be eliminated, the Minimum Quadratic Unbiased Estimation 
(MINQUE) proposed by Rao (1972) is one of the best methods and most 
commonly used. This method was successfully introduced by Wang et al 
(1988a) to estimate the VC-components of GPS observations. Furthermore, 
Wang et al (2002) improved their procedure by taking into account the temporal 
correlation of GPS observables. Due to the computational burden, Satirapod et 
al (2001a) proposed a new computation procedure to simplify the MINQUE 
method. 

In this paper, the performance of three stochastic models are examined and 
analyzed with various static GPS baseline data set. Those models are: A). The 
Standard model, which assumes that all raw GPS observables have the same 
variance and statistically independent. B). The outer product of the residual 
vector model. C). The MINQUE model. In the following section, the 
aforementioned models are briefly described.  The temporal correlation is 
assumed absent in our data experiments.  

2 The Stochastic Models of GPS Observations 

2.1 The Standard Model (Model A) 
As it has been described earlier that double-differenced GPS measurements are 
favored. Geometric configuration of such measurement is depicted in Fig.1.  
Suppose m satellites are tracked at epoch i by two receivers 1 and 2, thus total 
number the double-differenced measurement (l) is (m-1). The VC-matrix of the 
double-differenced measurements is constructed with the variance-covariance 
propagation law. 
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Figure 1 Geometric configuration of double-differenced GPS measurement 

 
By propagating the VC-matrix of the zero-differenced measurements and 
assuming that all the raw GPS measurements are uncorrelated and have the 
same a priori variance σ2 , the VC-matrix of the double-differenced 
measurements at epoch i can be written as: 
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Note that the VC-matrix of the double-differenced measurements relies heavily 
on the a priori variance σ2 and number of satellite m at each epoch. For detailed 
explanation, the reader is recommended to refer to Hoffman-Wallenhof et al 
(1994) and Leick (1995). 

2.2 The Outer Product of the Residual Model (Model B) 
The LS residual vector v of the measurements can be used to describe the 
stochastic properties of the measurements themselves, since it may reflect the 
characteristic of residual or unmodeled systematic errors. In this model, the 
outer product of the double-differenced residual is used to construct the VC-
matrix. 
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Two LS steps are carried out, first the LS is employed by taking into account 
the VC-matrix constructed from model A. Then, the double-differenced residual 
vector is computed. In the next step, the LS is re-employed with the VC-matrix 
constructed from the outer product of the residual vector v.  

2.3 Minimum Norm Quadratic Unbiased Estimation (Model C) 
A rigorous statistical method for estimating VC-components known as the 
Minimum Quadratic Unbiased Estimation (MINQUE) has been proposed by 
Rao (1972). For a set of double-differenced measurements at epoch i, the VC-
matrix equation 1 can be also be written as: 

 ∑=





















=
=

k

j
jij

rrrr

r

r

li TDDCov
1

2
21

2
2
2221

112
2
11

...
............

...

...

)( θ

σσσ

σσσ
σσσ

        (3) 

where θ is the vector of unknown variance components, T are so-called 
accompanying matrices and k=r(r+1)/2 is the number of unknown VC-
components. The VC-components can be estimated as: 

 qS .1−=θ . (4) 

where the matrix S={Sij} with  

 )( jiij RTRTTraceS =  (5) 

and the vector q = {qi} 

 RvRTvq i
T

i =  (5) 

and 

 PPQR v=  (6) 

Finally Qv is written as 

 [ ]TITI
v AADDCovAADDCovQ −− −= ])([)(  (7) 

I is an n x n identity matrix. It is noted from Qv that estimated VC-components 
depend on the Cov(DD)-matrix, which includes the VC-components 
themselves. Therefore, an iterative process must be performed Wang et al 
(1988a, 2002). Flowchart of the iterative MINQUE process is shown in Fig.2.  
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Figure 2 Flowchart of the iterative MINQUE process. 
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3 Test Result and Analysis 

3.1 Experimental data sets 
Some GPS static data sets are used to test the performance of the various 
stochastic models in static data processing. In this test, three GPS static baseline 
data sets, of which two of them were used in Wang et al (2002), are processed 
using the SNAP baseline processing software (Satirapod et al, 2001b). For all 
the data sets, the data interval is 3 seconds and the session length is 10 minutes. 
In the data processing, only L1 frequency data were used.  

Baseline 
name 

Receiver Baseline 
length (m) 

Survey dates 

B215M Ashtech Z-XII 215 7 June 1999 
B3KM Leica CRS-1000 2659 12 October 1999 
B13KM Trimble 4000SSE 13.300 18 December 1996 

Table 1 Details of the experimental data sets. 

It should be noted that in the case of the Ashtech data set, two receivers were 
mounted on pillars that are part of the first-order terrestrial survey network. The 
known baseline length between the two pillars is 215.929 ± 0.001 m (Wang et 
al, 2002), which will be used as ground truth to check the results obtained using 
the various stochastic modeling procedures.  

3.2 Analysis of Results 

3.2.1 GPS Measurements Accuracy Due to the Satellite Elevation 
Angle 

The LS residuals of the L1 double-differenced (DD) phase measurements for 
each data set are presented in Figs. 3 to 5, which show two time series of the 
DD residuals obtained from the baselines B215M, B3KM and B13KM 
respectively using different stochastic models. From the figures, it is clearly 
demonstrated that GPS measurements observed from different satellites do have 
different noise levels. It is of interest to note that the noise level decreases as the 
satellite elevation rises. Fig. 3 and 5 clearly show the significant different noise 
levels between the lowest and highest satellite elevation angles, while in Fig. 4, 
since the difference angles is not too large, both the DD residuals almost show 
the same characteristic. The periodic pattern seen in the DD residuals for a low 
satellite elevation angle, SV02-07 in Fig. 3 and SV15-18 in Fig. 5, indicates that 
multipath errors seem to have contributed the GPS measurements. In table 2, we 
compare the GPS measurement accuracy with the satellite elevation angle. The 
results shown in the table 2 are obtained from the baseline B215M using model 
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C. It can be seen that two satellite pairs SV02-07 and SV02-19, which have 
averaged elevation angle lesser than 20 degrees, have the worst accuracy 
compared with the other satellite pairs.   

 
Figure 3 The DD residuals obtained from the baseline B215M for the lowest 
(SV02-07) and highest (SV02-13) elevation of the satellite pairs. The Line and 
Circle symbols denote the lowest and highest elevation.  

 
Satellite 

pairs 
L1 DD phase standard 

deviation (cycle) 
Averaged satellite 
elevation (degrees) 

SV 02 - 27 0.0080 52.5 
SV 02 - 19  0.0326 19.4 
SV 02 - 07 0.0419 15.4 
SV 02 - 10  0.0090 51.8 
SV 02 - 13 0.0076 71.3 

Table 2 Relation between GPS measurement accuracy and satellite elevation 
angle. Obtained from B215M - Model C. 

These results have obviously a good agreement with that reported by Hartinger 
and Brunner (1999), Wieser and Brunner (2000, 2001). Although, the satellite 
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elevation may not reflect reality but it still can be used as a quality indicator. 
This result also suggests that the stochastic models should be chosen properly 
by considering the various noise levels in the GPS measurements.  

 
Figure 4 The DD residuals obtained from the baseline B3KM for the lowest 
(SV04-05) and highest (SV04-09) elevation of the satellite pairs. The Line and 
Circle symbols denote the lowest and highest elevation.  

3.2.2 Ambiguity validation test 
It has been shown in the previous section, c.f. Teunissen (1998), that the 
stochastic models have significance influence on ambiguity resolution. The 
discrimination test is one of the critical steps. In this study, the F and W-ratio 
statistics for the ambiguity validation test are used. The larger the values of 
these statistics, the more reliable the ambiguity resolution can be achieved. The 
F-ratio statistic is computed by comparing the change of the sum of squares of 
the best and second best solution of the ambiguity candidates (Leick, 1995): 
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Figure 5 The DD residuals obtained from the baseline B13KM for the lowest 
(SV15-18) and highest (SV15-29) elevation of the satellite pairs. The Line and 
Circle symbols denote the lowest and highest elevation.  

 

The critical value of the F-ratio is commonly chosen to be 2.0 or 3.0 (Abidin 
1993, Leick 1995, Han 1997). The W-ratio statistic is computed following 
Wang et al (1998b): 

 
dQ

dW
σ̂2.

<  (9)  

where ( ) ( ) smallest  smallest 2nd  PVVPVVd TT ∆−∆= , while σ̂  and Qd are the a 
posteriori standard deviation and cofactor of d, respectively. 

F-ratio statistics W-ratio statistics    
Baseline A B C A B C 
B215M 2.195 8.437 9.031 13.779 42.241 43.614 
B3KM 2.727 3.259 3.255 17.528 20.403 20.382 

B13KM 3.936 7.771 14.532 30.942 51.317 67.939 

Table 3 F-ratio and W-ratio values for the ambiguity validation test. 
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From table 3, it can be seen that for model A, all three baselines have small F 
and W-ratio values. Model C shows a better performance than model A and B 
since it generally can produce larger F and W-ratio. This may indicate that 
model C has successfully incorporated the statistical properties of the GPS 
measurements into the VC-matrix. It is interesting to note, however, in case of 
the baseline B3KM, the values of the F and W-ratio do not show a large 
difference among the models. The values of the F- and W-ratio for all the 
baselines obtained from model B are a little larger than those obtained from 
model C. These cases might be linked to the systematic errors existing in the 
measurements. As it has also been mentioned in the previous section, the 
MINQUE model (model C) is quite sensitive to the systematic errors.  

3.2.3 The estimated baseline components 
In table 4, the estimated baseline components and their a posteriori standard 
deviation are presented. In general, although there is no significance difference 
of the standard deviation among the models, model A produces larger standard 
deviations than the other models. These results indicate also that there is 
generally no significance difference both in the horizontal and vertical 
components. The differences in the estimated horizontal and height components 
among the models can be as large as 20 mm. However, for high precision 
applications such a difference becomes significant and then a realistic stochastic 
model is critical for such applications. For the baseline B215M, the estimated 
baseline lengths using model C is much closer to the known baseline length 
than are those using models A and B.  

Estimated baseline component (m) Standard deviation 
(mm) 

Baseline 
length (m) 

Baseline Model 

North East Up North East Up  
A -188.5132   105.2934   0.5108 0.4   0.4   0.6  215.9263 
B -188.5151   105.2932   0.5118 0.2 0.3 0.4 215.9279 

B215M 

C -188.5153   105.2931   0.5117 0.2 0.2 0.4  215.9280 
A -1832.9362   1926.9867   9.5452 0.2 0.2 0.7 2659.5158 
B  -1832.9368   1926.9871   9.5440 0.1 0.2 0.8  2659.5164 

B3KM 

C -1832.9368   1926.9871   9.5439 0.1 0.2 0.8  2659.5164 
A 7209.3642   -11173.7029   -30.0739   1.1 0.4 1.4 13297.6492 
B 7209.3665   -11173.7039   -30.0817 0.6 0.4 0.8  13297.6512 

B13KM 

C 7209.3677   -11173.7046   -30.0829 0.3 0.3 0.4  13297.6525 

Table 4 Estimated baseline components and standard deviations. 
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4 Conclusion 
In the commonly used, the stochastic model is constructed by assigning the 
same variance to all raw GPS measurements and assuming they are statistically 
independent. This common practice is not realistic in fact, since the 
measurements do have different noise levels. GPS measurements accuracy 
relies on the satellite elevation angles. The noise level decreases as the satellite 
elevation rise. To ensure high accuracy, this varying noise levels should be 
considered in the stochastic model. 

Unrealistic stochastic models will inevitably lead to biased statistic for 
ambiguity resolution and positioning results. In this paper, three different 
stochastic models, namely models A, B and C have been examined and 
analyzed. Various GPS static baseline data sets, namely B215M, B3KM and 
B13KM are used to examine the performance of the models. Overall, among the 
three models, model C, which is based on the modern statistical theory, is 
identified as the best one. Test results indicate that, using model C the reliability 
of the ambiguity resolution and the estimated baseline component as well as 
their standard deviation are well improved. For the longest baseline B13KM, 
the standard deviation for North and Up components are almost 2-3 times better 
than those obtained using Model B and A. The F and W-ratio statistics are also 
3 times larger.  

It should be pointed out here that model C is quite sensitive to the systematic 
errors. It would be quite often that the double-differenced measurements are still 
contaminated by the systematic errors. Therefore, model C should be applied 
carefully. A new method that considers the existing of the systematic errors in 
our measurements needs to be proposed. Simultaneous procedure to remove the 
systematic errors and to estimate the stochastic parameters is theoretically 
possible and this would be a topic for further research.     

Acknowledgment 
We would like to thank Dr. Chalermchon Satirapod of Chulalongkorn 
University, Thailand, for the discussion on the stochastic modeling and also for 
providing the matlab-coded SNAP GPS baseline processing. We thank also to 
two anonymous reviewers for some valuable comments on the original 
manuscript. 

 

 

 



Comparison of Stochastic Models for GPS Measurements 107

References 
1. Abidin, H. Z., Computational and geometrical aspects of on-the-fly 

ambiguity resolutions, Ph.D. dissertation, Dept. of Surveying Engineering 
Technical Report No. 164, University of New Brunswick, Fredericton, 
New Brunswick, Canada (1993). 

2. Bera, A. K., Suprayitno, T. & Premaratne, G., (2002), On some 
heteroskedasticity-robust estimators of variance-covariance matrix of the 
least-squares estimators, J.of Statistical Planning and Inference, 108,121-
136. 

3. Chang, Y. C., Theory of robust quadratic estimation and application to 
stochastic model for geodetic network - basic theory, J.of Geod. Soc of 
Japan, Vol. 49, No. 1, (2003a). 

4. Chang, Y. C., Theory of robust quadratic estimation and application to 
stochastic model for geodetic network - advance theory, J.of Geod. Soc 
of Japan, Vol. 49, No. 1, (2003b). 

5. Crocceto, N., Gatti, M. & Russo, P., Simplified formulae for the BIQUE 
estimation of variance components in disjunvtive observation groups, J. 
of Geod. 74:447-457, (2000). 

6. El-Rabbany, A. & Kleusberg, A., Effect of temporal physical correlation 
on accuracy estimation in GPS relative positioning, J. of Surveying and 
Eng. Vol. 129, No 1, (2003).  

7. Han, S., Carrier phase-based long-range GPS kinematic positioning, 
Ph.D thesis, School of Geomatic Engineering, The University of New 
South Wales, Sydney, Australia (1997). 

8. Hartinger, H. & Brunner, F. K., Variances of GPS phase observations: 
the SIMA-e model, GPS Solutions Vol 2, 4:38-43, (1999). 

9. Hofmann-Wellenhof, B., Lichtenegr, B. & Collins, J., GPS Theory and 
Practice, 3rd ed. Springer-verlag, Wien New York, (1994). 

10. Kuterer, H., On the sensitivity of the results of least-squares adjustments 
concerning the stochastic model, J.of Goeodesy, 73:350-361, (1999). 

11. Leick, A., GPS Satellite Surveying, 2nd ed. John Willey & Son, New 
York, (1995).  

12. Rao, C. R., Estimation of heteroscedastic variances in linear models, 
J.Ammerican Statistical Ass, Vol. 65, No. 329, (1972). 

13. Satirapod, C., Wang & J., Rizos, C., Simplified MINQUE procedures for 
the estimation of variance-covariances components of GPS observables. 
Surv. Review, (2001a). 

14. Satirapod, C., Wang, & J., Rizos, C., A new stochastic modeling 
procedure for precise static GPS positioning, ZVF, 126(6), 365-373, 
(2001b). 

15. Satirapod, S., Improving the GPS data processing algorithm for precise 
static relative positioning, Ph.D thesis, School of Surveying and Spatial 



Dudy Darmawan & Fumiaki Kimata 108

Information Systems, The University of New South Wales, Sydney, 
Australia, (2002). 

16. Teunissen, P. J. G., Jonkman, N. F. & Tiberius, C. C. J. M., Weighthing 
GPS dual frequency observations: bearing the cross of cross-correlation, 
GPS Solutions, Vol. 2, No. 2, 28-37, (1998). 

17. Tiberius, C. C. J. M. & Kanselaar, F., Estimation of the stochastic model 
for GPS and phase observables, Surv. Rev. 35(277), 441-454, (2000). 

18. Tiberius, C. C. J. M. & Kanselaar, F., Variance component estimation 
and precise GPS positioning: case study, J. of Surveying and Eng. Vol. 
129. No. 1, (2003). 

19. Wang, J., Satirapod, C. & Rizos, C., Stochastic assessment of GPS 
carrier phase measurements for precise static relative positioning, J. of 
Geodesy. 76:95-104, (2002). 

20. Wang, J., Stewart, M. P. & Tsakiri M., Stochastic modeling for static 
GPS baseline processing, J. Surv. Eng. 121:171:181, (1998a). 

21. Wang, J., Stewart, M. P. & Tsakiri M., (1998b), A discrimination test 
procedure for ambiguity resolution on-the-fly, J.of Geodesy, 72:644-653. 

22. Wiesser, A. & Brunner, F. K., An extended weight model for GPS phase 
observations, Earth Planets Space, 52, 777-782, (2000). 

23. Wiesser, A. & Brunner, F. K., SIGMA-F:variances of GPS observations 
determined by a Fuzzy system, Proceeding of the IAG2001 scientific 
assembly, Budapest, September 04, (2001). 

 


	Introduction
	The Stochastic Models of GPS Observations
	The Standard Model (Model A)
	The Outer Product of the Residual Model (Model B)
	Minimum Norm Quadratic Unbiased Estimation (Model C)

	Test Result and Analysis
	Experimental data sets
	Analysis of Results
	GPS Measurements Accuracy Due to the Satellite Elevation Angle
	Ambiguity validation test
	The estimated baseline components


	Conclusion

